MORRISON HERSHFIELD

Thermal Bridging Concepts for Structural Engineers

February 13, 2024

Outline

- Understand the fundamental concepts of building envelope thermal bridging.
- Review thermal bridging conditions and the impact on thermal and condensation resistance.
- Identify typical methods used to mitigate thermal bridges at structural conditions.

Building Envelope and Thermal Performance

The Building Envelope

Building Envelope Control Layers

Environmental Separation

- Control rain
- Limit air leakage
- Mitigate heat transfer
- Control vapor diffusion

Thermal Performance

Quantifying Thermal Performance

- U-Factor: Coefficient of heat transmission through a building component or assembly
- R-Value: The inverse of heat flow (resistance)

- Highly conducting material that bypasses an insulation layer
- Relative high heat transfer
- Potentially a significant impact on thermal performance (nominal vs. effective)
- Can allow condensation to occur

Thermal Bridging Consequences

- Condensation can occur surfaces that are below the dew point temperature
- A function of exterior temperature, surface temperatures, interior relative humidity

Thermal Bridging Concepts

Thermal Transmittance Types

Unless otherwise noted, modelling excerpts are from the Building Envelope Thermal Bridging Guide developed by BC Hydro, BC Housing, Canadian Wood Council, Fortis BC, FPInnovations, and Morrison Hershfield

Quantifying Thermal Performance

- Wall assembly: R-17 (nominal)
- Area: 200 sf
- Assembly with shelf angle: R-13.5

The shelf angle accounts for 21% of the heat flow through the assembly

Thermal Bridge Mitigation

Shelf Angle

- R-14 effective (R-17 nominal)
- Max 50% interior RH

Shelf Angle with Thermal Bracket

- R-16.4 effective (R-17 nominal)
- Max 75% interior RH

Quantifying Thermal Performance

- Wall assembly: R-18.5 (nominal)
- Area: 100 sf
- Assembly with beam penetration: R-14.0

The beam penetration accounts for 24% of the heat flow through the assembly

Condensation Risk

- Surface temperature may get as low as 46 deg. F (20 deg. F outside)
- Condensation may occur at 46% interior RH

Thermal Bridge Mitigation

Beam Penetration

- R-14 effective
- Max 46% interior RH

Thermal Coating

- R-15.2 effective
- Max 49% interior RH

Thermal Break

- R-16.3 effective
- Max 70% interior RH

Quantifying Thermal Performance

- Wall assembly: R-18.5 (nominal)
- Area: 200 sf
- Assembly with slab: R-11.8

The slab accounts for 36% of the heat flow through the assembly

Thermal Bridge Mitigation

Thermally Broken Slab Detail (Isokorb CM20)

Slab Penetration

- R-11.8 effective (R-18.5 nominal)
- Max 53% interior RH

Thermally Broken Slab

- R-15.8 effective (R-18.5 nominal)
- Max 75% interior RH

R-Value Reduction

Guide to Mitigating Thermal Bridging at Roof Decks – BC Housing (Prepared by Evoke) Figure 1. Roof Deck Plan

Roof plan showing parapet walls, planter with concrete curbs, and pedestals.

Orange = Parapets (240 m) Blue = Planter Walls (150 m) Purple = Columns (10)

Guide to Mitigating Thermal Bridging at Roof Decks – BC Housing (Prepared by Evoke)

P

Guide to Mitigating Thermal Bridging at Roof Decks – BC Housing (Prepared by Evoke)

Structural Considerations

THERMAL BREAK SOLUTIONS.

Slot Anchor Detail

Armatherm 500 Roof Anchor Thermal Break

Conclusions

- Thermal breaks are (probably) going to be used more often, including in mild climates
- Thermal performance and condensation mitigation should be thoughtfully developed during design (quantified)
- Design teams will need to coordinate more and better
- Be prepared to work through field issues with the contractors

